Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.

Identifieur interne : 000595 ( Ncbi/Merge ); précédent : 000594; suivant : 000596

Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.

Auteurs : Yefei Pang [États-Unis] ; Jing Dong ; Peter Thomas

Source :

RBID : pubmed:18420744

Descripteurs français

English descriptors

Abstract

Human G protein-coupled receptor 30 (GPR30) mediates estradiol-17beta (E2) activation of adenylyl cyclase in breast cancer cells and displays E2 binding typical of membrane estrogen receptors (mERs). We identified a mER in Atlantic croaker ovaries with characteristics similar to those of human GPR30. To confirm the proposed role of GPR30 as a mER in this distantly related vertebrate group, we cloned GPR30 from croaker ovaries and examined its distribution, steroid binding, and signaling characteristics. Western blot analysis showed the GPR30 protein (approximately 40 kDa) is expressed on the plasma membranes of croaker oocytes and HEK293 cells stably transfected with GPR30 cDNA. Plasma membranes prepared from croaker GPR30-transfected cells displayed high-affinity, limited-capacity, and displaceable binding specific for estrogens, characteristic of mERs. Consistent with previous findings with human GPR30, estrogen treatment of plasma membranes from both croaker ovaries and GPR30-transfected cells caused activation of a stimulatory G protein (Gs) resulting in increased cAMP production. Treatment with E2 as well as G-1, a specific GPR30 ligand, significantly reduced both spontaneous and progestin-induced maturation of both croaker and zebrafish oocytes in vitro, suggesting a possible involvement of GPR30 in maintaining oocyte meiotic arrest in these species. Injection of antisense oligonucleotides to GPR30 into zebrafish oocytes blocked the inhibitory effects of estrogen on oocyte maturation, confirming a role for GPR30 in the control of meiotic arrest. These findings further support our previous suggestion that GPR30 is a vertebrate mER. In addition, the results suggest GRP30 may play a critical role in regulating reentry into the meiotic cell cycle in fish oocytes.

DOI: 10.1210/en.2007-1663
PubMed: 18420744

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18420744

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.</title>
<author>
<name sortKey="Pang, Yefei" sort="Pang, Yefei" uniqKey="Pang Y" first="Yefei" last="Pang">Yefei Pang</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Jing" sort="Dong, Jing" uniqKey="Dong J" first="Jing" last="Dong">Jing Dong</name>
</author>
<author>
<name sortKey="Thomas, Peter" sort="Thomas, Peter" uniqKey="Thomas P" first="Peter" last="Thomas">Peter Thomas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18420744</idno>
<idno type="pmid">18420744</idno>
<idno type="doi">10.1210/en.2007-1663</idno>
<idno type="wicri:Area/PubMed/Corpus">002114</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002114</idno>
<idno type="wicri:Area/PubMed/Curation">002114</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002114</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F93</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F93</idno>
<idno type="wicri:Area/Ncbi/Merge">000595</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.</title>
<author>
<name sortKey="Pang, Yefei" sort="Pang, Yefei" uniqKey="Pang Y" first="Yefei" last="Pang">Yefei Pang</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Jing" sort="Dong, Jing" uniqKey="Dong J" first="Jing" last="Dong">Jing Dong</name>
</author>
<author>
<name sortKey="Thomas, Peter" sort="Thomas, Peter" uniqKey="Thomas P" first="Peter" last="Thomas">Peter Thomas</name>
</author>
</analytic>
<series>
<title level="j">Endocrinology</title>
<idno type="ISSN">0013-7227</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cell Line</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cyclic AMP (metabolism)</term>
<term>Estrogens (pharmacology)</term>
<term>Female</term>
<term>Flow Cytometry</term>
<term>Humans</term>
<term>Immunohistochemistry</term>
<term>Immunoprecipitation</term>
<term>Meiosis (drug effects)</term>
<term>Molecular Sequence Data</term>
<term>Oocytes (drug effects)</term>
<term>Oocytes (metabolism)</term>
<term>Ovary (drug effects)</term>
<term>Ovary (metabolism)</term>
<term>Perciformes</term>
<term>Phylogeny</term>
<term>Receptors, Estrogen (metabolism)</term>
<term>Receptors, Estrogen (physiology)</term>
<term>Receptors, G-Protein-Coupled (classification)</term>
<term>Receptors, G-Protein-Coupled (genetics)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique (métabolisme)</term>
<term>Animaux</term>
<term>Cytométrie en flux</term>
<term>Danio zébré</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Humains</term>
<term>Immunohistochimie</term>
<term>Immunoprécipitation</term>
<term>Lignée cellulaire</term>
<term>Membrane cellulaire ()</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Méiose ()</term>
<term>Oestrogènes (pharmacologie)</term>
<term>Ovaire ()</term>
<term>Ovaire (métabolisme)</term>
<term>Ovocytes ()</term>
<term>Ovocytes (métabolisme)</term>
<term>Perciformes</term>
<term>Phylogénie</term>
<term>RT-PCR</term>
<term>Récepteurs couplés aux protéines G ()</term>
<term>Récepteurs couplés aux protéines G (génétique)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Récepteurs des oestrogènes (métabolisme)</term>
<term>Récepteurs des oestrogènes (physiologie)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Technique de Western</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP</term>
<term>Receptors, Estrogen</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Meiosis</term>
<term>Oocytes</term>
<term>Ovary</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Oocytes</term>
<term>Ovary</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP cyclique</term>
<term>Membrane cellulaire</term>
<term>Ovaire</term>
<term>Ovocytes</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Récepteurs des oestrogènes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oestrogènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Estrogens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Récepteurs des oestrogènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Receptors, Estrogen</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cell Line</term>
<term>Female</term>
<term>Flow Cytometry</term>
<term>Humans</term>
<term>Immunohistochemistry</term>
<term>Immunoprecipitation</term>
<term>Molecular Sequence Data</term>
<term>Perciformes</term>
<term>Phylogeny</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cytométrie en flux</term>
<term>Danio zébré</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Humains</term>
<term>Immunohistochimie</term>
<term>Immunoprécipitation</term>
<term>Lignée cellulaire</term>
<term>Membrane cellulaire</term>
<term>Méiose</term>
<term>Ovaire</term>
<term>Ovocytes</term>
<term>Perciformes</term>
<term>Phylogénie</term>
<term>RT-PCR</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Technique de Western</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human G protein-coupled receptor 30 (GPR30) mediates estradiol-17beta (E2) activation of adenylyl cyclase in breast cancer cells and displays E2 binding typical of membrane estrogen receptors (mERs). We identified a mER in Atlantic croaker ovaries with characteristics similar to those of human GPR30. To confirm the proposed role of GPR30 as a mER in this distantly related vertebrate group, we cloned GPR30 from croaker ovaries and examined its distribution, steroid binding, and signaling characteristics. Western blot analysis showed the GPR30 protein (approximately 40 kDa) is expressed on the plasma membranes of croaker oocytes and HEK293 cells stably transfected with GPR30 cDNA. Plasma membranes prepared from croaker GPR30-transfected cells displayed high-affinity, limited-capacity, and displaceable binding specific for estrogens, characteristic of mERs. Consistent with previous findings with human GPR30, estrogen treatment of plasma membranes from both croaker ovaries and GPR30-transfected cells caused activation of a stimulatory G protein (Gs) resulting in increased cAMP production. Treatment with E2 as well as G-1, a specific GPR30 ligand, significantly reduced both spontaneous and progestin-induced maturation of both croaker and zebrafish oocytes in vitro, suggesting a possible involvement of GPR30 in maintaining oocyte meiotic arrest in these species. Injection of antisense oligonucleotides to GPR30 into zebrafish oocytes blocked the inhibitory effects of estrogen on oocyte maturation, confirming a role for GPR30 in the control of meiotic arrest. These findings further support our previous suggestion that GPR30 is a vertebrate mER. In addition, the results suggest GRP30 may play a critical role in regulating reentry into the meiotic cell cycle in fish oocytes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18420744</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0013-7227</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>149</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Endocrinology</Title>
<ISOAbbreviation>Endocrinology</ISOAbbreviation>
</Journal>
<ArticleTitle>Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.</ArticleTitle>
<Pagination>
<MedlinePgn>3410-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1210/en.2007-1663</ELocationID>
<Abstract>
<AbstractText>Human G protein-coupled receptor 30 (GPR30) mediates estradiol-17beta (E2) activation of adenylyl cyclase in breast cancer cells and displays E2 binding typical of membrane estrogen receptors (mERs). We identified a mER in Atlantic croaker ovaries with characteristics similar to those of human GPR30. To confirm the proposed role of GPR30 as a mER in this distantly related vertebrate group, we cloned GPR30 from croaker ovaries and examined its distribution, steroid binding, and signaling characteristics. Western blot analysis showed the GPR30 protein (approximately 40 kDa) is expressed on the plasma membranes of croaker oocytes and HEK293 cells stably transfected with GPR30 cDNA. Plasma membranes prepared from croaker GPR30-transfected cells displayed high-affinity, limited-capacity, and displaceable binding specific for estrogens, characteristic of mERs. Consistent with previous findings with human GPR30, estrogen treatment of plasma membranes from both croaker ovaries and GPR30-transfected cells caused activation of a stimulatory G protein (Gs) resulting in increased cAMP production. Treatment with E2 as well as G-1, a specific GPR30 ligand, significantly reduced both spontaneous and progestin-induced maturation of both croaker and zebrafish oocytes in vitro, suggesting a possible involvement of GPR30 in maintaining oocyte meiotic arrest in these species. Injection of antisense oligonucleotides to GPR30 into zebrafish oocytes blocked the inhibitory effects of estrogen on oocyte maturation, confirming a role for GPR30 in the control of meiotic arrest. These findings further support our previous suggestion that GPR30 is a vertebrate mER. In addition, the results suggest GRP30 may play a critical role in regulating reentry into the meiotic cell cycle in fish oocytes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Yefei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES 012961</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Endocrinology</MedlineTA>
<NlmUniqueID>0375040</NlmUniqueID>
<ISSNLinking>0013-7227</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004967">Estrogens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011960">Receptors, Estrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E0399OZS9N</RegistryNumber>
<NameOfSubstance UI="D000242">Cyclic AMP</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000242" MajorTopicYN="N">Cyclic AMP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004967" MajorTopicYN="N">Estrogens</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008540" MajorTopicYN="N">Meiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009865" MajorTopicYN="N">Oocytes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010053" MajorTopicYN="N">Ovary</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010473" MajorTopicYN="N">Perciformes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011960" MajorTopicYN="N">Receptors, Estrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18420744</ArticleId>
<ArticleId IdType="pii">en.2007-1663</ArticleId>
<ArticleId IdType="doi">10.1210/en.2007-1663</ArticleId>
<ArticleId IdType="pmc">PMC2453078</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Endocrinol. 2002 Feb 22;187(1-2):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2004 Jun;145(6):2968-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15001543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2000 Apr;62(4):995-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10727269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2000 Sep;14(9):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10976921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2006 Mar;20(3):631-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2005 Nov;73(5):988-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Comp Endocrinol. 2006 Jan 1;145(1):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16139281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Oct;148(10):4853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1999 Aug;140(8):3805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10433242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Aug 4;346(3):904-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2007 Aug 17;2(8):536-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17655271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2006 Apr;71(4):310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2005 Nov 15;287(2):249-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16229830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 11;307(5715):1625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2004 Mar 1;267(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2006 Sep;20(9):1996-2009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1996 Nov 12;228(2):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8920907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fish Physiol Biochem. 1986 Oct;2(1-4):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:101-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2000 Oct;14(10):1649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11043579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12574519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2000 Sep 6;92(17):1403-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10974076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2006 Nov 1;12(21):6359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2007 Mar;21(3):664-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2004 Jul;71(1):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 1993 Nov;49(5):980-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2006 Dec;102(1-5):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2005 Sep 1;285(1):70-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 Apr;170(4):1210-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Acad Sci Hebd Seances Acad Sci D. 1975 Sep 22;281(12):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">813851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Apr;2(4):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Exp Biol. 2000 Oct;38(10):967-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11324167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 May 8;234(1):190-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9168987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2005 Feb;146(2):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1947-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Jan;3(1):27-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14708019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Feb;148(2):705-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool. 1990 Jul;255(1):97-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2391470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 1990 Nov;43(5):818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2291916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Endocr Metab Disord. 2002 Sep;3(3):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2007 Oct;28(4):143-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 22;23(29):9529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Feb 15;67(4):1859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2002 Jan;16(1):70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1997 Nov 1;45(3):607-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Obstet Gynecol. 2007 Apr;196(4):386.e1-9; discussion 386.e9-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2007 Apr;71(4):959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Jul;148(7):3236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2002 Jan;16(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol A Mol Integr Physiol. 2006 Oct;145(2):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1999 Feb;103(3):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1997 Nov;81(5):885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2001 Apr;142(4):1669-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Comp Endocrinol. 1988 Aug;71(2):307-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3203878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1998 Jan 15;47(2):310-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9479505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dong, Jing" sort="Dong, Jing" uniqKey="Dong J" first="Jing" last="Dong">Jing Dong</name>
<name sortKey="Thomas, Peter" sort="Thomas, Peter" uniqKey="Thomas P" first="Peter" last="Thomas">Peter Thomas</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Pang, Yefei" sort="Pang, Yefei" uniqKey="Pang Y" first="Yefei" last="Pang">Yefei Pang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000595 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000595 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:18420744
   |texte=   Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:18420744" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021